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Abstract-Within the bounds of large deformation theory the necessary mathematical analysis for
incompressible and nearly incompressible elastic materials is briefly stated and some results of
structural stress and deformation analysis, simulating void formation in filled elastomers, are
given. Void development around spherical inclusion in stretched elastomeric matrix under external
pressure, and without it, is analysed,

NOMENCLATURE

Kinematic and geometric quantities
Q displacement vector with covariant up and contravariant uP components
u;, u'P value of Up and uP in n-node
~,p increment of u·p

"'., lfI. shape functions for n-node
"'.,1 derivative of the shape function "'. on ql generalized coordinate
R metric tensor of undeformed volume with components gli' gli and g{
g determinant of covariant components of the tensor g
F, FT deformation gradient tensor and its transposition
ex,ex

-
I Cauchy-Green deformation measure tensor and its inverse quantity with components Gli and Gli,

respectively; ex = F 'F
G determinant of covariant components of the tensor ex
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Vo, sg
(e) (ej

Vo, sg
nt

invariants of the tensor ex (i = 1,2,3; j = 1,2)
invariants of Cauchy-Green deformation tensor (i = 1,2,3)
initial and actual radius-vectors of a material point
initial and actual frames of reference; f j = or/oq', R, = oR/oq'
orthonormal frame of reference
2nd order Kristoffel symbol
shear parameter
elongation factor
vertical displacement of the cylinder ends
cylinder length
measure of cylinder external deformation

unstrained volume and surface of the whole body

unstrained volume and surface of one finite element
covariant components of unit vector n normal to undeformed surface sg,

Force quantities
T
Q
(II)

~f­
K,P
KP,PP
FP
BP, SP
P
pO
H
H·
'1"

true stress tensor with ti} components for basis ej : T = tjiejei
energy stress tensor with Q'l components
contravariant components of generalized 2nd (symmetric) Piola-Kirchhoff stress tensor
derivative of quantity (Ii) on enk
volume and surface forces corresponding to Vo-volume and Sg-surface
contravariant components of K and P
contravariant components of surface forces acting on a current surface
increments of KP and FP
pressure acting on a cylinder surface
density of material in Vo-volume
normalized quantity of (J
value of H in n-node
increment of H·,

WI,W
He

Energy quantities

elastic pontentials (i = 1, 2, 3)
functional of Herrmann type for incompressible and nearly incompressible materials with finite
deformations

AfJ., BfJkmn coefficients defining the elementary work of the internal forces bA = (JlibGI) in Vo-volume: bA =
(Jl}bGli = 2u'i(AfJ. +BfJkm.,r)bU;
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b symbol of variation
A normalization factor.

Elastic moduli

Cj~ ~

kj,pj, qj
, ,
Xl' X2
X*
II.,B
G, v
o

generalized elastic moduli (i = 1,2,3; j = 1,2)

coefficients for Cj expansion in series

coefficients for ~ expansion in series, ~ = I/X2
normalized quantity of XI

Lame constant and volumetrical modulus
shear modulus and Poisson ratio
symbol over a letter defining quantity with zero increment.

1. INTRODUCTION

The behavior of many composite materials such as filled rubbers is very complicated for a
variety of reasons. The damage accumulation due to matrix detachment from filler particles
seems to be the most significant among them.

The peculiarities of the stress-strain state in the matrix detached from spherical
inclusion have not yet been discussed. This task, however, seems to be important for those
who investigate structure-property problems in the field ofgranular elastomeric composites.

Clear understanding of the stress-strain state of damaged elements can help the
development of the rational constitutive relations for composite materials. The purpose of
this paper is to provide new insight into the problem mentioned.

The solution is carried out within the framework of the finite elasticity theory for
incompressible and nearly incompressible rubbery materials. Unified constitutive relations
for slightly compressible and incompressible materials are developed and a functional for
numerical solutions is suggested.

2. CONSTITUTIVE EQUATION FOR INCOMPRESSIBLE AND NEARLY INCOMPRESSIBLE
ELASTOMERS

The ratio of shear modulus to volume compression modulus is extremely small in the
elastomeric materials. This allows for elastomers to be considered as incompressible or
nearly incompressible materials. The materials incompressibility is generally represented by
the kinematic relation /3 = I, where /3 is the third tensor invariant of the Cauchy-Green
deformation measure GX = FTF, where F is the deformation gradient. Our approach is
based on using the generalized elasticity moduli which are thought to be the best indicators
of material compressibility or incompressibility. Our approach also allows for the elab­
oration of a unified representation both for incompressible and slightly compressible
materials. It is essential for the latter case as approximation of slightly compressible
materials by incompressible ones is not valid under constrained deformation conditions.

For an isotropic homogeneous material, the elastic potential W is a function of three
invariants of the Cauchy-Green deformation measure GX and usually for a slightly com­
pressible material W is expanded into a series of /3 in the vicinity of unity with confinement
up to the 2nd order (Ogden, 1984, 1986). The choice for W of one or other invariants as
independent variables leads to different constitutive equations, the generalized elasticity
moduli of which are defined by the elastic potential or on the basis of experimental data.
In the. first case the use in W of any invariant is of no importance but in the second case
this may considerably simplify a problem of generalized elasticity moduli identification.
Consider the three groups of tensor GX invariants:

(la)
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2 1 2 I 2

II = Ii/nO, 12 = 12/nO, 13 = 13;
3 I 3 I 3
II =11-(/3-1), 12=/2-2(/3- 1), 13=h
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(lb)

(IC)

The first group comprises the well-known main invariants of the Cauchy-Green defor-
2 2

mation measure tensor (Lurje, 1970). The invariants II and 12 are introduced by Penn
(I970) and related to the tensor GX /n/3 (Palmov, 1976), with only material shape changing
as the third invariant of it is equal to unity. Invariants (Ic) are introduced by Cescotto and
Fonder (1975). They follow from the well-known expressions (Lurje, 1970) relating the
main invariants of the Cauchy-Green deformation measure tensor to the main invariants
of the Cauchy-Green deformation tensor A (k = 1,2,3) :

1 I

11=2jl+3, 12=4jl+4j2+3, 13 =2jl+4h+8h+1. (2)

Defining, from the last equality, the quantity 2jl and substituting it into the first two
relations we have

1 1

II = 3-4h-8h+(/3-I), 12 = 3-4h-I6h+2(/3- I).

Introducing the following notation:

3 3
II = 3-4j2- 8j3' 12 = 3-4h-I6j3'

we come to the invariants (Ic). For small deformations, invariants (1 b) and (Ic) are similar.
Indeed .

Here the expansions of quantities 1/1~/3 and I/I~/3 into the series of 13 in the vicinity of
I I

unity are used. Since the quantities II - 3, 12 - 3 and 13-1 are of the same order, then
2 3

keeping only the first order terms in the above written expressions we find that II = II and
2 3
12 = 12 ,

Using the invariants (I a) - (Ic) elastic potential is written as

and its expansion into the series of 13 leads to the expressions:
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where
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From these expressions with the help of the ordinary procedure we get the following
equations:

where

kj(Il,l2) = aw/alj, Pj(Il,/2) = aXI/alj,

Qj(Il'/2)=ax2/alj, i=I,2,3, }=1,2,

(3a)

(3b)

(3c)

(4)

Q is the energy stress tensor, g is the metric tensor ofundeformed volume. In the undeformed
state eqns (3) lead to the relations

the results of which for natural (without stress) initial configuration are

(5)

Reduction of the expressions (3) to the linear elasticity, which can be easily carried out
using eqns (2) and keeping only linear terms for deformations, gives the following equalities
for generalized elasticity moduli, Lame constant A and shear modulus G:

A= 4[~ (k 1+2k2+Xl)+2~ (k 1+2k2+X1 )- (k 1+k2)+(PI +2P2+X2 )] ,
OIl 012

GX=I

G = 2(k 1+k2)IG
x
=l; (6a)
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A = 4[X2- ~(kl +k2)JL~I' G = 2(k l +k2)Lal;

A = 4[X2-(kl+k2)JIGx al' G = 2(kl +k2)IGxal'

From the expressions (6b) and (00) it follows that
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(6b)

(00)

GX=I GXal

(7)

where B and v are the volumetric modulus and Poisson ratio, respectively. In turn it follows

from these relations that if X2(X2) => 00 then B=> 00 and v => 0.5. Note that the last equality
has been obtained by Cescotto and Fonder (1975). As the above noted parameters

kj , pj, qj, Xj, i = I, 2, 3, j = I, 2 in eqns (3) can be obtained from the elastic potential
expressions or from experiments [see Rogovoy (1988) and Kozhevnikova et al. (1983)].
It should be pointed out that, if the constitutive equation with parameters determined
experimentally is energetically admissible, then the equalities following from the relations
(4) must be fulfilled:

i i
ak, ak2-,-. = ---.-,
012 all

i i
apt ap2
-,-. =--r,
012 all

i i
aql aq2
-,-. =-,-'.
012 all

Let us show the principal possibility for determination of some generalized elasticity
moduli from the three simple experiments and their correspondence to one or another
group of invariants in the sense of simplicity of elasticity moduli identification.

Simple shear
In this process the material point, defined before deformation by radius vector r = xiei

(ei' ej = ~ij' i, j = I, 2, 3, ~ij is the Kronecker delta), in the actual configuration occupies
the place R = (xl+sx2)el+x2e2+x3e3 (s is a shear parameter). Then the basis vectors,
components of metric tensor and determinant of its covariant components are written in
the initial and actual configurations as :

ri = ar/axi
: rl = et> r2 = e2, r3 = e3;

gii = fl = I, gij = gij = 0, i ::F j; 9 = I;

Ri = aR/axi
: R1 = et> R2= sel +e2, R3 = e3;

G I2 =S GI3=O} {Gil = l+s
2

G
I2

=-S

G22 = I +S2 G23 = 0, G 21 = -s G22 = I

G32 =O G33 =1 G 31 =0 G32 =0

I I

G = 1. From these relations II = t/jGij = 3+s2
, 12 = (G/g)gijGij = 3+s2, 13 = I and

123
I j = I j = I j , j = I, 2. So taking into account the relations (3) we have the following non-
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zero true stress tensor T = (j ejej components:

22 (I I I) 33 (I I I) I 2I = 2 k ,+2k2+XI , I = 2 k , +2k2+XI +2k2s ;

22 2
2

2(k
2

2k
2

) 2 33 2
2

2(k
2

k
2

) 2t = XI - 3 1+ 2 s, t = XI - 3 1- 2 S ;

til = 2XI +2(kl +k2)S2, t
l2 = 2(k1 +k2)s,

333
t 22

= 2x" t 33 = 2XI +2k2s2
•

(8a)

(8b)

(8c)

In this problem the stresses til, t 22 and t 33 can be measured experimentally so the quantities
iii 3

k h k 2 and XI can be defined. The simplest relations follow from expressions (8c) for k"
3 3
k2 and XI.

Hydrostatic stress state
In this process

and then

gu = gU = I, gij = gij = 0, i '# j; 9 = I;

R I = ).eh R 2 = ).e2' R 3 = ).e3 ;

G 12 Gji I
U=A, =).2'

I I I 2 2

/1=3A. 2, /2=3A. 4
, /3=A.6; /1=/2=3

and from the expressions (5)

2 3 3
XI = 0; /1 = 3A. 2 -(A.6 -1), /2 = 3A.4 -2(A.6 -1);

2
til = 122 = t 33 = 2A.3X2 (3, 3) (A. 6 -I);

I II = t 22 = t 33 = 2e lG_A.3)+4(\A.( I-A.2)+2A.{XI +X2().6 -I)J.
Here, the quantity XA3, 3) is easily defined from the relation (9b).

(9a)

(9b)

(9c)

Uni-axial strain state
The process of the cylindrical body upsetting in a closed volume corresponds to this

problem. The kinematic and force characteristics of the process for cylindrical frame of
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reference q I = r, q2 = qJ, q3 = z, where qi are generalized coordinates, are as follows:

C= rCI +ZC3, R = rCI +Azr3;

r,=e" c2=re2, r3=e3, lei l=l, i=I,2,3;

22 _ 1 _ ij _ 0 0 o.
9 -2' gij-g - , I#J,r

R, = e" R 2 = re2, R 3 = ).,e3, G'I = Gil = 1, G22 = rZ, G33 = ).,2,

G 22 = l/r2, G 33 = 1/..1.2, Gij = Gij = 0, i # j; G = (,).)2;

I I

/1 = 2+ ..1. 2, /2 = 1+2)" 2, /3 = ).,2;

2 2+..1.22 1+2..1.23 3
/I=~' /2=~' /'=/2=3

. 3
and from the relations (5) X, = 0;

(I' = (22 = 2 ~I +2G +..1.)C2+ 2..1.[X I+ Xz(..1. 2 -1)1
(33 = 2..1.(C, +2(2)+2{XI +X2(..1.2_l)];

2

II 22 2 ( 2 C 2) , 2) 2 1 [2 2'2 )]( = ( = 3..1. 5/3 C, + ..1. 213 (I-A + A XI +X2(A -1 ,

33 4 (2 ( 2 ) 2 [2 2 2 ].( = - 3..1. 5/3 CI + ..1. 2/3 (1-..1. )+2..1. XI+X2(A -1) ,

1 12[3 3 ]II 22 - A 2 2 3 2( = ( = 2~..1.- C I(3,3,..1. )+C2(3,3,..1.) +2AX2(3,3)(A -1),
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(lOa)

(lOb)

(lOc)

3
In this problem, stresses (I' and (33 are measured and the quantity X2(3, 3) and the complex
3 3

C I (3,3, ..1. 2)+C2(3, 3, ..1. 2 ) are easily defined from the expression (10c).
Thus, assuming the simplicity of the generalized elasticity moduli identification (or

part of them) on the basis of experimental data as a criterion for selection of one or other
group of invariants, used in the elastic potential W, we given the preference to invariants
(1c) for the above examined problems. And in the following section of this paper we use
the state equations (3c), (4) without index 3 over the letters.

Of course, from the relations (8)-(10), taking into account expressions (5), we get zero
stress for the undeformed state. In the case of incompressible material we have A = 1 for

i
eqns (9) and (10). And again taking into account the expressions (5) we find that X2 = 00,

i = 1, 2, 3. [For i = 2 this result was reported by Kozhevnikova et al. (1983) and by
i

Rogovoy (1988).] Then from the relations (4) we conclude that ex = 0 and it leads to

/3 - 1 = O. So the variable ~ in the expressions (3) becomes a new unknown quantity defined
from the solution of the problem. It follows from the above consideration that the consti­
tutive equations (3), (4) are justified both for the slightly compressible and incompressible
materials.
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3. VARIATIONAL FORMULATION OF THE PROBLEM AND NUMERICAL
IMPLEMENTATION

For solving non-linear elastic problems a functional for incompressible and nearly
incompressible materials is used (Rogovoy, 1988) :

He(H,u) = Iv. {AH(/3-I)-AZ~(H-X*)2+ W(Il,!Z)

+1(k 1+kZ)[(I3 -1) -AIX(H-X*)]Z - pOK· u}dVo- Lg P·udSg. (II)

In the linear case it induces the Herrmann (1965) functional. In expression (11) u is the
displacement vector,

Voand sg are respectively the unstrained volume with volume forces K and density pO and
the surface where forces P are applied. The functional (11) varies in Hand u. Rogovoy
(1988) has shown that the variational equation is equivalent to a continuum mechanics
equation system and has performed an analytical check on the constitutive equations (3c),
(4) and the functional (II).

The finite element method has been used for the calculations. The generalized elasticity
moduli in (3c), (4) are assumed to be constant, so XI = 0 and X* = O. Varying the functional
(11) in u and approximating the displacement vector components by the shape function t/J:

where n, m are the node element numbers, u;, umk are the covariant and contravariant
<e>

displacement vector components in nand m nodes, we get for element Vo:

where

qij = 1AQij +(k) +kz)[(/3-I) -AIXH]/3G
i
j,

A~n = gft/!n,j -t/Jnr~, t/Jn,j = ot/Jn/oqj,

B~kmn = g~t/Jm,it/Jn,j - t/Jm,it/Jnr]k +l/Jml/Jn,jni-l/Jml/JnrtiPj.,

(12)

(13)

r~j are the 2nd order Kristoffel symbols, Varying the functional (II) in H and approximating
Has H = qJnHn, we restrict ourselves to

(14)

where

M = A[I-IX(kl +k2)].

The system of equations for the functional (11) is non-linear, since qij is explicitly
dependent both on u and H, and PP and 13 only on u. The dependence ofPP on u is associated



Void growth around spherical inclusion 245

with reducing the force FP, specified in the current configuration, on the undefonned surface
S o.

p'

(15)

where n; are covariant components of the unit vector D, nonnal to the undefonned surface
sg. Let us linearize eqns (12)-(15). Let

o 0
t1"k = umk +emk

, Hm = Hm+"m,
o 0

J(T' = J(T'+BP, FP = FP+SP. (16)

Since the values emk and "m are small, their squared values can be neglected. As was
mentioned above, aij can be represented as

Substituting here the expressions (16) and following Oden (1972) we make a series expansion
in terms ofemk and "m, having preserved only the linear terms:

(17)

Taking into account that PP = PP(umk
), and transfonning the expression (15) in the same

manner, we get

(18)

where

o
PP =

(19)

Substituting the expressions (17)-(19) into (12) and (14), taking into account (16), omitting
tenns equal to zero and preserving only the linear tenns emk and "m, we have:

Summing the expressions for all elements, we get a complete resolution system for the
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functional (11). The specification of the equation system for axisymmetrical problems was
performed by Kozhevnikova et al. (1983).

The stiffness matrix is symmetric in the absence of surface tractions; that helps with
solving problems. A program was developed and tested, using triangular cylindrical finite
elements with a square approximation to the displacement field, and linear functions for
the mean pressure and incremental load procedure. In contact zones the conditions of non­
penetration and non-positiveness of normal pressure have been introduced.

4. NUMERICAL RESULTS AND DISCUSSION

The whole body of mathematical expressions developed above has been applied to
void evolution analysis around rigid spherical inclusion in an incompressible elastomeric
matrix. The matrix properties are supposed to be neo-Hookean characterized by the elastic
potential (k] = 0.05 MPa, k 2 = 0), in accordance with real material behavior in the defor­
mation region of about 100-200%.

The inclusion is compacted in the spherical cavity of the elastomer (Fig. 1). No bonding
between matrix and inclusion and no friction at the contact surface are assumed. Cylinder
ends are stretched, vertical displacements Wo being constant and radial ones not
constrained. The stress-strain state of the matrix is supposed to be sensitive to lateral
pressure after the detachment has occurred. So the stress-strain analysis was performed
under various lateral pressures. The measure of external deformation is chosen as
6~ = (A.;-1)/2, where A.c = (L+2Wo)/L is the elongation factor for the point C (see Fig.
1). As the problem is symmetrical, one quarter of the body has been analysed and Fig. 2
illustrates the boundary conditions and the model of the finite element mesh used in the
calculations. The latter is obtained by transformation of the standard finite element mesh
to the computational region with condensation ofelements near the inclusion and symmetry
axis of the body as shown in Fig. 2. In the present calculation it is assumed that N = 7,
M = 27 for the standard finite element mesh, steps for W o and p being equal to 0.05 mm
and 0.005 MPa, respectively.

Figure 3 represents profiles of vacuoles under external deformations 6~ = 0.25,0.4 and
0.6 with lateral pressures being equal to (a) zero and (b) p = 0.1 MPa. On the void surface
we have marked one and the same material point to show the character of displacement.

The plots in Fig. 4 show the principal deformation (curve I) and stress (curve 2)
distributions along the vacuole contour and principal stresses (curve 3) normal to the
vacuole contour, reduced to the unstrained volume coordinates, depicted for external
deformation 6~ = 0.6, with lateral pressures (a) 0 and (b) 0.1 MPa.

c

R=2

~•...J

R=IO

o 0 0'----.--.-Wo-.----'

Fig. 1. Modelling problem (in mm).
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Fig. 2. Boundary conditions and model of the finite element mesh used in calculation (a) and
obtained by transformation of the standard finite element mesh (b).

247

From curve 1, one can clearly see that in the absence of lateral pressure the maximum
local strain along the vacuole profile appears in the equator zone and reaches 160% (right­
hand scale). Under lateral pressure the maximum local strain shifts to the line separating
the contact and free vacuole surfaces, the maximum value of strain being decreased a factor
of 1.3. Lateral pressure influences stress (curves 2, 3) rather than deformation. The maximum
tensile stresses for the contour (point A) are located near the line separating the contact and
free vacuole surfaces both in the presence and absence of lateral pressure. In the latter case
this stress is twice as high (left-hand scale). In the vacuole pole compressible stresses take
place in both cases. In the presence of lateral pressure they are more intense. Compressible
contact stresses (curve 3) are more than twice as high under external pressure, the contact
zone being larger in this case.

The performed analysis ofmatrix detachment from inclusion has shown that the zone,
where the matrix is separated from the sphere surface, seems to be the most liable for
cracking. The experimental data by Gent and Park (1984) corroborate this conclusion. It
has been established that superposition of external pressure decreases maximal extensional
deformation, as well as maximal tensile stress, at the void walls under the same external

Fig. 3. Profiles of vacuoles under external deformations E~ = 0.25 (curve 1),0.4 (curve 2) and 0.6
(curve 3) with lateral pressures being equal to (a) zero and (b) p = 0.1 MPa. The scale of quantity

lullR is 2: I.
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(0) 0.4
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4 (bJ 0.4 4

db Wo
o:::n

~ ~§p
2 0.2 2

c: If c0
:0:; ::E 0.,

o ~ vi 0 o ~'"
~ f .2
a iil 2l

-2 -0.2 -2

-0.7

-0.4 -4 -0.4 -4

Fig. 4. The principal deformation (curve I) and stress (curve 2) distributions along the vacuole
contour and principal stresses (curve 3) normal to the vacuole contour, reduced to the unstrained
volume coordinates, for external deformation E~ = 0.6 with lateral pressures being equal to (a) zero

and (b) p = 0.1. MPa.

deformation. It is one of the factors promoting the overall increase in both strength and
deformation of the composite stretched under pressure.

5. CONCLUSION

The method for solving boundary problems of finite elasticity is developed. The stress­
strain state of an elastomer detached from spherical inclusion is examined. The analysis
partly clarifies the strengthening effect of external pressure on the elastomeric granular
composites.
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